Combined nutrient and macroalgae loads lead to response in seagrass indicator properties.
نویسندگان
چکیده
Excess nutrients are potential factors that drive phase shifts from seagrasses to macroalgae. We carried out a manipulative field experiment to study the effects of macroalgae Ulva pertusa loading and nutrient addition to the water column on the nitrogen (N) and carbon (C) contents (i.e., fast indicators) as well as on the morphology and structure (i.e., slow indicators) of Zostera marina. Our results showed rapid impact of increased macroalgae and nutrient load on Z. marina C/N ratios. Also, macroalgae addition resulted in a trend of decreasing belowground biomass of seagrasses, and nutrient load significantly decreased above to belowground biomass ratio. Although some morphological/structural variables showed relatively fast responses, the effects of short-term disturbance by macroalgae and nutrients were less often significant than on physiological variables. Monitoring of seagrass physiological indicators may allow for early detection of eutrophication, which may initiate timely management interventions to avert seagrass loss.
منابع مشابه
Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia.
In remote, tropical areas human influences increase, potentially threatening pristine seagrass systems. We aim (i) to provide a bench-mark for a near-pristine seagrass system in an archipelago in East Kalimantan, by quantifying a large spectrum of abiotic and biotic properties in seagrass meadows and (ii) to identify early warning indicators for river sediment and nutrient loading, by comparing...
متن کاملTropical seagrass-associated macroalgae distributions and trends relative to water quality
Tropical coastal marine ecosystems including mangroves, seagrass beds and coral reef communities are undergoing intense degradation in response to natural and human disturbances, therefore, understanding the causes and mechanisms present challenges for scientist and managers. In order to protect our marine resources, determining the effects of nutrient loads on these coastal systems has become ...
متن کاملFast Detection of Nutrient Limitation in Macroalgae and Seagrass with Nutrient-Induced Fluorescence
BACKGROUND Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll flu...
متن کاملEnhancement of sediment suspension and nutrient flux by benthic macrophytes at low biomass
In shallow coastal ecosystems where most of the seafloor typically lies within the photic zone, benthic autotrophs dominate primary production and mediate nutrient cycling and sediment stability. Because of their different structure and metabolic rates, the 2 functional groups of benthic macrophytes (seagrasses, macroalgae) have distinct influences on benthic−pelagic coupling. Most research to ...
متن کاملEffects of the green macroalga Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary
A common symptom of eutrophication in temperate estuaries is the proliferation of ephemeral, floating macroalgae. Information on the effects of blooms on underlying assemblages mostly originates from non-vegetated intertidal and subtidal habitats. Blooms also often settle in large aggregations over seagrasses, where they decompose. To test hypotheses concerning the effect of dense mats on under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Marine pollution bulletin
دوره 106 1-2 شماره
صفحات -
تاریخ انتشار 2016